博客
关于我
【Lintcode】1354. Pascal‘s Triangle II
阅读量:205 次
发布时间:2019-02-28

本文共 1213 字,大约阅读时间需要 4 分钟。

杨辉三角(Pascal's Triangle)是数学中一种重要的递归结构,每一行的元素可以通过组合数计算得到。本文将介绍如何通过滚动递推的方法计算杨辉三角的指定行。

滚动递推法

为了高效地计算杨辉三角的某一行,我们采用滚动递推的方法。这种方法通过维护两个列表(row1和row2)来实现,每次迭代时只需要将row1和row2交换,并更新row1的元素即可。

方法逻辑

  • 初始化:首先初始化两个列表row1和row2,分别存储当前行和下一行的元素。
  • 边界条件:如果请求的行索引为0,直接返回row1;如果索引为1,返回row2。
  • 递推过程
    • 对于索引大于1的行,首先初始化row1的元素。
    • 通过交替更新row1和row2的元素,逐步构建杨辉三角的下一行。
    • 在每次迭代后,交换row1和row2的位置,并继续递推。
  • 代码实现

    import java.util.ArrayList;import java.util.List;public class Solution {    public List
    getRow(int rowIndex) { List
    row1 = new ArrayList<>(); List
    row2 = new ArrayList<>(); row1.add(1); row2.add(1); row2.add(1); if (rowIndex == 0) { return row1; } if (rowIndex == 1) { return row2; } for (int i = 0; i < rowIndex - 1; i++) { row1.add(0); } for (int j = 1; j < row2.size(); j++) { row1.set(j, row2.get(j - 1) + row2.get(j)); } row1.add(1); List
    swap = row1; row1 = row2; row2 = swap; return row2; }}

    时空复杂度

    该方法的时间复杂度为O(n),其中n为所需行的索引值。通过滚动递推,我们只需要线性时间来计算每一行的元素。空间复杂度同样为O(n),主要用于存储当前行和下一行的元素。

    这种方法不仅高效,还简化了内存使用,使其适用于大规模计算。

    转载地址:http://cqds.baihongyu.com/

    你可能感兴趣的文章
    nodejs 开发websocket 笔记
    查看>>
    nodejs 的 Buffer 详解
    查看>>
    NodeJS 的环境变量: 开发环境vs生产环境
    查看>>
    nodejs 读取xlsx文件内容
    查看>>
    nodejs 运行CMD命令
    查看>>
    Nodejs+Express+Mysql实现简单用户管理增删改查
    查看>>
    nodejs+nginx获取真实ip
    查看>>
    nodejs-mime类型
    查看>>
    NodeJs——(11)控制权转移next
    查看>>
    NodeJS、NPM安装配置步骤(windows版本)
    查看>>
    NodeJS、NPM安装配置步骤(windows版本)
    查看>>
    nodejs下的express安装
    查看>>
    nodejs与javascript中的aes加密
    查看>>
    nodejs中Express 路由统一设置缓存的小技巧
    查看>>
    nodejs中express的使用
    查看>>
    Nodejs中搭建一个静态Web服务器,通过读取文件获取响应类型
    查看>>
    Nodejs中的fs模块的使用
    查看>>
    NodeJS使用淘宝npm镜像站的各种姿势
    查看>>
    NodeJs入门知识
    查看>>
    nodejs包管理工具对比:npm、Yarn、cnpm、npx
    查看>>