博客
关于我
【Lintcode】1354. Pascal‘s Triangle II
阅读量:205 次
发布时间:2019-02-28

本文共 1213 字,大约阅读时间需要 4 分钟。

杨辉三角(Pascal's Triangle)是数学中一种重要的递归结构,每一行的元素可以通过组合数计算得到。本文将介绍如何通过滚动递推的方法计算杨辉三角的指定行。

滚动递推法

为了高效地计算杨辉三角的某一行,我们采用滚动递推的方法。这种方法通过维护两个列表(row1和row2)来实现,每次迭代时只需要将row1和row2交换,并更新row1的元素即可。

方法逻辑

  • 初始化:首先初始化两个列表row1和row2,分别存储当前行和下一行的元素。
  • 边界条件:如果请求的行索引为0,直接返回row1;如果索引为1,返回row2。
  • 递推过程
    • 对于索引大于1的行,首先初始化row1的元素。
    • 通过交替更新row1和row2的元素,逐步构建杨辉三角的下一行。
    • 在每次迭代后,交换row1和row2的位置,并继续递推。
  • 代码实现

    import java.util.ArrayList;import java.util.List;public class Solution {    public List
    getRow(int rowIndex) { List
    row1 = new ArrayList<>(); List
    row2 = new ArrayList<>(); row1.add(1); row2.add(1); row2.add(1); if (rowIndex == 0) { return row1; } if (rowIndex == 1) { return row2; } for (int i = 0; i < rowIndex - 1; i++) { row1.add(0); } for (int j = 1; j < row2.size(); j++) { row1.set(j, row2.get(j - 1) + row2.get(j)); } row1.add(1); List
    swap = row1; row1 = row2; row2 = swap; return row2; }}

    时空复杂度

    该方法的时间复杂度为O(n),其中n为所需行的索引值。通过滚动递推,我们只需要线性时间来计算每一行的元素。空间复杂度同样为O(n),主要用于存储当前行和下一行的元素。

    这种方法不仅高效,还简化了内存使用,使其适用于大规模计算。

    转载地址:http://cqds.baihongyu.com/

    你可能感兴趣的文章
    NIO基于UDP协议的网络编程
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    nmon_x86_64_centos7工具如何使用
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>